AFRICA 20 WORKS! 22

Innovation for Resilient Growth

GROUND WATER MANAGEMENT FOR AGRICULTURAL PURPOSES

Government of the Netherlands

MODERATOR

MR. FRANS VERBERNE

Senior Coalition Builder

Netherlands Food Partnership

PRESENTATION 1

MS. TINE TE WINKEL

Expert Water Resources Sustainability

Acacia Water

Groundwater and Agriculture

Africa Works

Tine te Winkel

June 28th, 2022

Acacia Water

ACACIAWATER

- Highly specialized groundwater consultancy
- Global operations
- Over 30 academically trained water specialists
- Professional yet practical

Groundwater & agriculture

- Approximately 70% of the global groundwater withdrawals are used for agricultural production;
- 80% in Africa;
- Groundwater withdrawals played a major role in accelerating food production and economic development.

United Nations, The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible. UNESCO, Paris. Compiled by UNESCWA, based on McStraw (2020) and on GRACE 2.0 (n.d.).

Area of groundwater storage decline increased by 100% compared to base year

Area of groundwater storage decline increased by 95% compared to base year

Moving forward

- Profitable and sustainable groundwater use;
- Fact based baselines;
- Practical solutions:
 - Working boreholes;
 - Recharge systems
 - Efficient groundwater use

How do we solve this in NL?

- Salinization and drought;
- Seed potato industr
- Aquifer Storage and Recovery
- €300 450,-/ha/yr
- Decennia of potato cultivation in water scarce areas

Mark Slot bekijkt zijn suikerbieten, die waarschijnlijk nooit meer hoeven te slapen op peilgestuurde drainage.

Application in Africa

- Groundwater development in Africa is challenging;
- Will not improve in future;
- Agricultural development and overall water security depends on groundwater;
- Financial resources often considered difficult;
- Fact based and solutions

Application in Africa

- Potential borehole investment maps;
- Mapping investment risks;
- Scaling groundwater storage;
- Together with the local experts to build capacity and secure investments

What's next?

- In NL the investment for sustainable gv in agriculture is about €300/400 / ha
- We need to work towards this in Africa as well;
- With the right partners and investors;
- Acacia Water is your practical knowledge partner;
- Regenerate and develop sustainable agriculture based on GW;
- But, investment is needed!

ACACIAWATE

CLEAN SAFE VATER

PRESENTATION 2

MR. RASOUL D. MIKKELSEN

Director for Strategic Business Development

Royal Eijkelkamp

GroundWater Management for Agricultural Purposes

Meet the difference

Company history and values

- Started in 1911, Royal since 2011
- Family owned
- Represented by specially selected partners on **5 continents** and in more than **90+ countries**
- Own offices in US and UK

Sustainable Development Goals

With our integrated solutions for water and agriculture challenges we embrace UN's Sustainable Development Goals.

Perfect Storm: Too much water | No water | Poor quality water

- FAO estimates that high or very high-water shortage or scarcity currently impacts around 3.2 billion rural people.
- More than 170 million hectares that is over 60 percent of irrigated croplands are subject to high water stress.
- At least 155 million people are facing acute hunger because of conflict, economic shocks and extreme weather. Over half of the population in Africa are food insecure
- Currently, agriculture accounts (on average) for 70 percent of all freshwater withdrawals globally.
 Access to fresh water due to Climate impact decreases dramatically.
- Increased saltwater intrusion to groundwater and freshwater discharge into the oceans.

Holistic and Value Chain Approach

Integrated Solutions

- Smart Water Resource Management (making water cloud
- And invisible more visible)
- Remote quantity and quality monitoring of water resources
- Smart Agricultural Remote Soil monitoring, smart irrigation based on data
- Soil health
- Smart Geotechnical survey and monitoring
- Rainwater harvesting (Managed Aquifer Recharge)

Case study | Water Quantity and Quality monitoring – Sri Lanka

In assignment of Ministry of Irrigation & Water Resources Management

Scope

Establishment of Groundwater Monitoring Network – Pilot Project, covering Malwathu Oya, Maduru Oya and Kumbukkan Oya River Basins in Sri Lanka, completely financed by The Netherlands (Rabobank).

Project activities (1)

- Field and Desk Research
- Collecting data in GIS: e.g. land use, topography, geology, rain fall, water quality / level, wells for agriculture, drinking water, industry, etc.
- Criteria for selection of monitoring points: water level (deep and shallow), water quality, water use, productivity.

Project activities (3)

Installation of the monitoring wells

DataViewer by Royal Eijkelkamp

i. Eğhelhany

1

Real time monitoring | Control Room

Monitoring groundwater quality and quantity | DataViewer

Integrated approach to climate resilient agriculture, food & water nexus, Case Middle East

Land rehabilitation

Palm polyculture

Case

Gulf region: Integrated approach to climate resilient agriculture and food production built on a comprehensive data management system

- Soil Health: Endemic trees and restoration of the micro-biology results in re-generated soil structure and fertility without use of chemicals.
- Water Resource Management-Effecient Irrigation System
- In the long term, the area will not only become climate resilient, but has also positive impact on climate change and healthy soil and freshwater balance.

Water Production Desalination and freshwater storage

- Conversion of seawater into fresh irrigation water through condensation
- Use of ecologically clean waterglass basins, also used for water storage of precipitation
- Restoration of coastal life (e.g. mangroves) will improve biodiversity and water quality

Holistic Value Chain Approach

Conclusions/recommendations: (Business As Usual Is Not An Option)

- Value Chain Approach.
- Food, Water, Job Security nexus.
- Silo thinking is not an option. We can only solve the global water & food challenges in collaboration and partnerships
- We need to translate various studies to concrete projects, solutions and actions. Less talk more actions
- Stop talking about the private sector but engage the privates more
- Scale up the solutions that works and move from pilot to scale

Ministerie van Buitenlandse Zaken

UN 2023 Water Conference "Uniting the world for water"

The Netherlands and Tajikistan, as co-hosts, and UNDESA with the support of UN-Water as Secretariat of the Conference will strive to make the Conference a watershed moment for the world.

Three Principles:

- **Inclusive**: both in terms of (a) the Conference process (ensure vertical and horizontal inclusiveness) and in terms of (b) the results (leaving no-one behind)
- Action-oriented: the Conference aims to lead to concrete results through concrete actions and plans on the ground
- Cross-sectoral: the Conference should mobilise all other sectors to improve the way they manage and utilize water resources. These sectors need to bring their plans and actions to the Conference.

UN accreditation process **deadline** 15 July '22

Water Action Agenda

Ministerie van Buitenlandse Zaken

UN 2023 Water Conference The Conference deliverables

- **Deliver a summary** of the Conference proceedings 1.
- 2. Present a set of voluntary commitments - in a Water Action Agenda - to get the world back on track:
 - Scale up and replicate what works
 - **Discontinue or change** what does not work
 - **Innovate** what needs to be improved
 - **Fund** what merits funding
- Roadmap towards 2028 (Decade) and 2030 (SDGs) 3.
 - Commitments can come through coalitions and partnerships across all of society

WATER ACTION AGENDA

Ministerie van Buitenlandse Zaken

Ministerie van Buitenlandse Zaken

Share your stories, ideas and good
practicesThank you, let's create a watershed moment by uniting
the world for water!Commit to water related goals
& Act by valuing and managing water betterFor any questions and follow up please email
UN2023WaterConference @minbuza.nl

#UN2023WaterConference

Any questions?

Thank you for your attention

Rasoul D. Mikkelsen | Director for Strategic Business Development

r.mikkelsen@eijkelkamp.com

PRESENTATION 3

DR. ARJEN DE VOS

Founder and Director

The Salt Doctors

- Saline groundwater -

a hidden treasure ?

AfricaWorks, 28 June 2022 Innovation for Resilient Growth **Groundwater Management for Agricultural Purposes**

Dr. Arjen de Vos, Director The Salt Doctors

About us

The Salt Doctors: increase crop yield under saline conditions and put the solutions into the hands of farmers (sustainable solutions, ecological and economic approach) "knowledge provider", research and consultancy, independent social enterprise **Key focus:**

> * Salinity assessments and mapping of opportunities * Research, training (of trainers) and capacity building * Developing, demonstrating and implementing scalable solutions

"Creating opportunities for salt-affected farmland"

Saline groundwater, a hidden treasure ? How much is available ?

Where is Earth's Water?

- there is more saline than fresh groundwater
- saline surface water more or less equal to fresh water

By using saline (ground) water, it is possible to double the amount of available water for agriculture !

Volume of water in km ³ (cu mi)	% total water ◆	% salt water ◆	% fresh water ◆		
1,338,000,000 (321,000,000)	96.5	99.0			
24,364,000 (5,845,000)	1.76		69.6		
23,400,000 (5,600,000)	1.69				
12,870,000 (3,090,000)	0.93	0.95			
10,530,000 (2,530,000)	0.76		30.1		
176,400 (42,300)	0.013				
85,400 (20,500)	0.0062	0.0063			
91,000 (22,000)	0.0066		0.26		

Saline groundwater, a hidden treasure ? Can you use it ?

Using saline water for irrigation can have a negative effect on:

- * soil structure (for soils rich in clay)
 - * poor water infiltration
 - * poor root development
 - * poor workability
- * salt concentration of the rootzone (accumulation)
- * nutrient availability
- * soil microbial community
- * crop yield

*

using saline (ground) water only possible with carefull (irrigation) management

Saline groundwater, a hidden treasure ? Can you use it ?

Using saline water for irrigation can have a negative effect on: * soil structure (for soils rich in clay)

- * poor water infiltration > use of cover crops, application of gypsum, compost,...
- * poor root development > crop cultivation on raised beds, increase org. matter,...
- * poor workability....> see above, adjusted equipment,...
- * salt concentration of the rootzone (accumulation) > controlled leaching and drainage
- * nutrient availability > adjusted fertilizer strategy, improve micro-climate
- * soil microbial community > compost, manure, biostimulants,...
- * crop yield > use of salt tolerant crops

using saline (ground) water only possible with carefull (irrigation) management

Saline groundwater, what is "saline"?

Table 1. General classification of salt-affected soils, based on SAR, EC_e and pH values, and their effect on the soil physical conditions*

Classification	SAR	ECe (in dS/m)	Soil pH	Soil physical condition
Sodic	> 13	< 4.0	> 8.3	poor
Saline-sodic	> 13	> 4.0	< 8.3	varies
Saline	< 13	> 4.0	< 8.3	normal
High pH	< 13	< 4.0	> 7.8	varies

Table 2. Soil salinity levels and the potential use of various crops

ECe (dS/m)	Salinity intensity	Potential use of crops
< 1	Cliabt	Viold of most groups only slightly a
< 4	Siight	field of most crops only slightly a
4 - 8	Moderate	Moderate salt tolerant crops are
0	6 .	
8 - 12	Strong	Salt tolerant varieties of convention
12 -16	Very strong	Limited number of highly tolerant
4.6	– .	
> 16	Extreme	Only halophytes will produce sati

iffected, except for highly sensitive crops

- suitable for cultivation
- onal crops still suitable for cultivation
- t varieties of conventional crops
- sfactorily yields

the actual salinity level and soil conditions also determine the potential use

What can we do with moderate/strong salinity levels?

8 years (2012-2019) of **Research and Development** in The Netherlands, 800 varieties of 50 different crops tested, tolerant varieties found of potato, carrot, cauliflower, beets, cabbage

salt tolerant varieties of conventional crops have been identified

56 plots: 7 different salt concentrations, 8 repetitions, 1 hectare plot.....

Agricultural Water Management Volume 252, 30 June 2021, 106902

Agricultural

Estimating cultivar-specific salt tolerance model parameters from multi-annual field tests for identification of salt tolerant potato cultivars

G. van Straten * A Ø, B. Bruning ^{b, 1}Ø, A.C. de Vos ^{b, 1}Ø, A. Parra González ^{b, 2}Ø, J. Rozema ⊠, P.M. van Bodegom ^d ⊠

Journal of Arid Environments Volume 203, August 2022, 104775

Saline soils worldwide: Identifying the most promising areas for saline agriculture

Katarzyna Negacz ^a A ⊠, Žiga Malek ^a⊠, Arjen de Vos ^b⊠, Pier Vellinga ^a⊠

PROCEEDINGS

GLOBAL SYMPOSIUM ON

ALTAFFECTED

Bas Bruning¹, Corne Lugtenburg², Nada Elbedawy³, Arjen de Vos¹

Agricultural Water Management Volume 213, 1 March 2019, Pages 375-387

An improved methodology to evaluate crop salt tolerance from field trials

G. van Straten ^a A ≅, A.C. de Vos ^b ≅, J. Rozema ^c ≅, B. Bruning ^d ≅, P.M. van Bodegom ^e ⊠

Crop salt tolerance

An economic analysis of the yield of eight varieties of potato grown under saline conditions

Implementation

Potato: Implementation Pakistan 2016-2017

Result: 42% yield increase under moderate saline conditions, compared to the local variety (ECe around 8 dS/m, 10 ha total)

Egypt 2020-2021

Result: 32 ton/ha, ECe 5-6 dS/m

SEVEIN

some results

Using saline water, example Kenya

October 5, 2020	source	рН	EC	Na	Са	К	Mg	SAR
			dS/m	ppm	ppm	ppm	ppm	
F1	borehole	6.6	6.9	662	416	21	263	6
F4	river	7.9	10.7	1620	234	28	235	18
F6-R	river	8.1	3.8	518	231	36	116	7
F6-W	shallow well	7.2	8.5	1240	484	58	327	11

Spinach beet and cabbage cultivation

EC irrigation water 3.8-10.7 dS/m, drip and flood irrigation, sandy clay,

EC soil 13.3-7.6 dS/m (ensure water harvesting during wet season)

yield: 10-13 tons/ha spinach beet 32-50 tons/ha cabbage

understand the system > work towards solutions

Using saline water, example Iraq

Potato cultivation around Basrah

EC irrigation water 6.3 dS/m, drip irrigation, loamy sand,

EC soil 10.9 (start) > 7.3 dS/m (end) (leaching)

mulch treatment yield +29% (reduce evaporation...)

yield: 24-60 tons/ha....

understand the system > work towards solutions

Using saline water, example Morocco

The Salt Doctors

understand the system > work towards solutions

- Date palm cultivation around Erfoud
- EC irrigation water 14.6 dS/m, drip irrigation, loamy soil
- EC irrigation water 9.0 dS/m flood irrigation use of intercropping (alfalfa)
- intercropping / cover crops > reduced
 evaporation, improve water infiltration,
 increase org. matter, extra revenue,...

Controlled leaching and drainage to prevent salt accumultation rootzone

Use deep trenches for drainage (of saline water)

Plant salt tolerant trees and shrubs "to close the cycle"?

0.3 m

0.9 m

The Salt Doctors

but what about leaching fraction? prevent (further) salinization of groundwater....

Integrated solutions: agro-forestry > acting as wind breaker (stop sand movement), provide additional income, bio-drainage,...

Example agro-forestry with Sesbania sesban (Fayoum, Egypt, soil salinity = 12 dS/m, clay soil)...

Hydroponics open-field, low-tech, high profit (?)

for water-scarce conditions, using saline water example Tunisia

Hydroponics open-field, low-tech, high profit (?)

use saline water or reject brine for crop production...

(conventional) salt tolerant crop, new crops, cover crops, intercropping, agro-forestry, fodder/silvopasture, halophytes

integrated, nature-based solutions for crop/soil/water at field/farm/landscape scale

Summary

- Saline water sources have the potential to double the amount of water available for agriculture
- there are possibilities for using saline resources, but carefull management is needed
- many farmers are already using saline water for irrigation, no other option
- solutions should be tailor-made to the local conditions, needs and (market) opportunities
- ensure a sustainable, integrated approach (soil fertility and salt accumulation • topsoil vs deeper layers, farm level – regional level, ecosystem view,...)

For more info: Arjen de Vos, arjen@thesaltdoctors.com

THANK YOU FOR YOUR ATTENTION DO YOU HAVE ANY QUESTIONS?

www.africaworks.nl | africaworks@nabc.nl | +31 (0) 70 304 3618 Pr. Beatrixlaan 582, 2595 BM, The Hague, Netherlands

